

1

Agenda

• Overview:

- ✤ What is spectrum analysis?
- What measurements do we make?
- Theory of Operation:
 - Spectrum analyzer hardware
- Specifications:
 - Which are important and why?
- Features
 - Making the analyzer more effective

Summary

sics

Agenda

Overview

- Theory of Operation
- Specifications
- Features
- Summary

Frequency versus Time Domain

Overview

Different Types of Analyzers

Fourier Analyzer

Overview

Different Types of Analyzers

Swept Analyzer

Agenda

• Overview

- Theory of Operation
- Specifications
- Features
- Summary

Theory of Operation Spectrum Analyzer Block Diagram

Video Filter

Other Components

How it all works together

Agenda

Overview

- Theory of Operation
- Specifications
- Features
- Summary

Accuracy: Frequency Readout Accuracy

Typical datasheet specification:

Spans < 2 MHz: ± (freq. readout x freq. ref. Accuracy + 1% of frequency span + 15% of resolution bandwidth + 10 Hz "residual error")

Accuracy: Frequency Readout Accuracy Example

Single Marker Example:

2 GHz 400 kHz span 3 kHz RBW

Calculation: $(2x10 \text{ Hz}) \times (1.3x10 \text{ //} \text{r.ref.error}) = 260 \text{ Hz}$ 1% of 400 kHz span = 4000 Hz 15% of 3 kHz RBW = 450 Hz 10 Hz residual error = 10 Hz $\text{Total} = \frac{1}{2} 4720 \text{ Hz}$

Accuracy: Relative Amplitude Accuracy

- Display fidelity
- Frequency response
- \triangle **RF Input attenuator**
- \triangle Reference level
- \triangle Resolution bandwidth
- \triangle CRT scaling

Accuracy: Relative Amplitude Accuracy - Display Fidelity

Applies when signals are not placed at the same reference amplitude

Display fidelity includes

 Log amplifier or linear fidelity
 Detector linearity
 Digitizing circuit linearity

Technique for best accuracy

Accuracy: Relative Amplitude Accuracy - Freq. Response

Specification: ± 1 dB

Accuracy: Relative Amplitude Accuracy

- \triangle RF Input attenuator
- **A Resolution bandwidth**
- \triangle CRT scaling

Accuracy: Absolute Amplitude Accuracy

Calibrator accuracy

Frequency response

Reference level uncertainty

Accuracy: Other Sources of Uncertainty

- **Mismatch**(RF input port not exactly 50 ohms)
- Compression due to overload h-level
- Distortion products

input signal)

- Amplitudes below the log amplifier range
- Signals near noise
- Noise causing amplitude variations
- Two signals incompletely resolved

What Determines Resolution?

Resolution Bandwidth

RBW Type and Selectivity

Residual FM

Noise Sidebands

Resolution: Resolution Bandwidth

Resolution: Resolution Bandwidth

Resolution: RBW Type and Selectivity

Resolution: RBW Type and Selectivity

Specifications Resolution: Residual FM

Residual FM "Smears" the Signal

Resolution: Noise Sidebands

Noise Sidebands can prevent resolution of unequal signals Spectrum Analysis Basics
Specifications

Resolution: RBW Determines Measurement Time

Specifications

Resolution: Digital Resolution Bandwidths

5:1

38 Spectrum Analysis Basics

Specifications Sensitivity/DANL

A Spectrum Analyzer Generates and Amplifies Noi Just Like Any Active Circuit

Signal-To-Noise Ratio Decreases as RF Input Attenuation is Increased

Spectrum Analysis Basics 40

Specifications Sensitivity/DANL: IF Filter (RBW)

Decreased BW = Decreased Noise

Specifications Sensitivity/DANL: VBW

Specifications Sensitivity/DANL

For Best Sensitivity Use:

*** Narrowest Resolution BW**

*** Minimum RF Input Attenuation**

★ Sufficient Video Filtering (Video BW < .01 Res BW)</p>

Mixers Generate Distortion

Most Influential Distortion is the Second and Third Order

Two-Toned Intermod

Harmonic Distortion

Relative Amplitude Distortion Changes with Input Power Level

Distortion is a Function of Mixer Level

→ Change in amplitude = at least some of the distortion is being generated inside

Spectrum Analysis Basics 50

Signal-to-Noise Ratio Can Be Graphed

Dynamic Range Can Be Presented Graphically

Calculated Maximum Dynamic Range

 $MDR_{2} = 2/3 (DANL - TOI)$

$$MDR_{2} = 1/2 (DANL - SOI)$$

Where TOI = Mixer Level - dBc/2

SOI = Mixer Level - dBc

Optimum Mixer Level = DANL - MDR

Attenuation = Signal - Optimum Mixer Level

Example Calculation

Dynamic Range for Spur Search Depends on Closeness to Carrier

Actual Dynamic Range is the Minimum of:

Maximum dynamic range calculation

Calculated from: → distortion → sensitivity

Noise sidebands at the offset frequency

Spectrum Analysis Basics J

Console Location 3, 22-MAR-1995 13:21 Pbar SA Plot 03/22/95 1306 STACK PROFILE GREEN BEFORE RED AFTER TUNING 29 MA Scale 10 dB/div . Atten Ø dB . Swp 1 sec Vid BW 300 Hz ۲ Res BW 300 Hz Ref Lv1 -30 dB VID AVG BEFORE AFTER Stop Freq 79.26000001 MHz

Start Freq 79.21000001 MHz

.

.

Console Location 1, Emittance Measurement / Traces

10-DEC-1994 23:46

Agenda

- Overview
- Theory of Operation
- Specifications
- Features
- Summary

Basic Operation: Remote Operation, Markers & Limit Lines

Modulation Measurements: Time Domain

Features Modulation Measurements: E

Modulation Measurements: FFT

Modulation Measurements: FFT

Modulation Measurements: AM/FM Detector with Speake

Modulation Measurements: Time-Gating

Time Division Multiple Access (TDMA)

Modulation Measurements: Time-Gating

Time-Gated Measurements in the gate **Frequency Domain** angth "time gating" gate delay Envelope GATE Detector Video Filter Frequency 70 Spectrum Analysis Basics

Noise Measurements: Noise Marker & Video Averaging

Features Stimulus Response: Tracking Generator Receiver Source **Spectrum Analyzer** RF in CR1 Displa IF LO TG out Tracking Adjust **Tracking Generator**
Agenda

- Overview
- Theory of Operation
- Specifications
- Features
- Summary